

Digitalization YES – but Good Processes FIRST

Results of Quick-check Initiative for Industry 4.0 Introduction in SME

26th of June, 2019 Chambre de Commerce, Luxembourg

Thomas Korne

Portfolio

IPL - Institute for Production and Logistics Systems

Global orientation

Production & logistics

Strategy consulting

- Worldwide projects
- Located in the Greater Region of FR, LU, DE
- Greenfield-/Brownfieldconcepts
- Development and transformation of production systems

- Industry 4.0 Roadmapping
- Supply chain organisation
- Design of material flow

Qualification, coaching and training

- Lean Six Sigma
- Company and supplier development

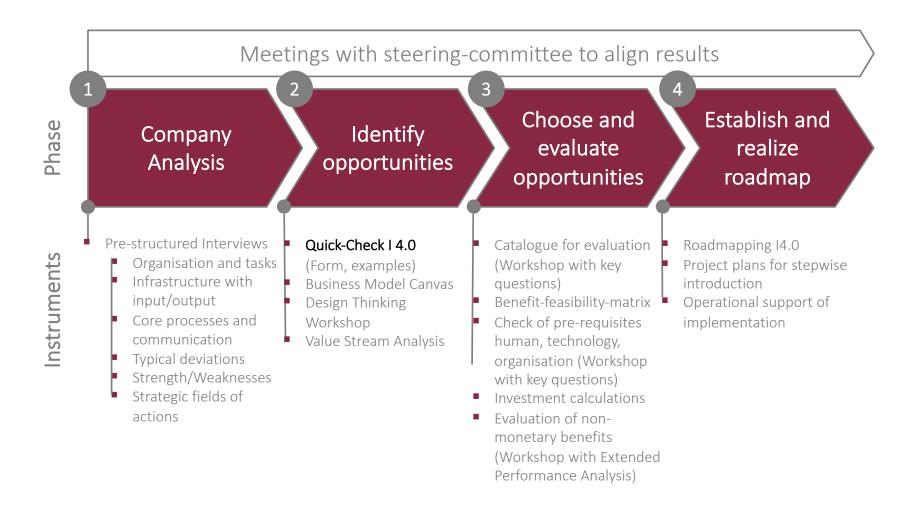
European Research and Development

- Academic research methodology
- Development of innovative methods for practical application

Management and organisation

- Project management
- Interims-management & service

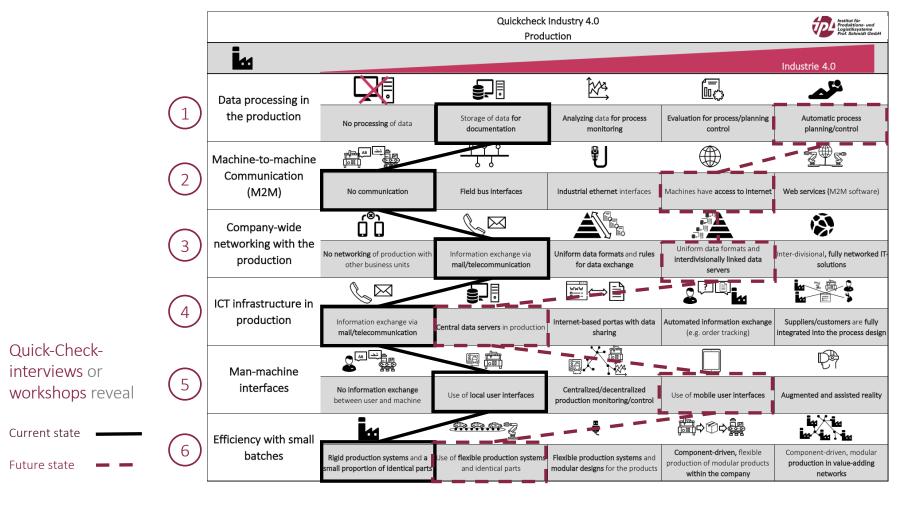
Agenda


Content of Presentation

- Quick-Check I4.0 Methodology
- Product Side
 - Current transition level of I4.0
 - Recommendations
- Production Side
 - Current transition level of I4.0
 - Pre-requisites for Industry 4.0
 - Crossroads-model
 - Industry 4.0 from lean process perspective
 - Recommendations
- Summary

Methodology: Individual Company Roadmap for Industry 4.0

Approach, Phases and Instruments

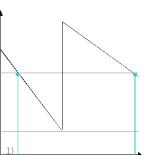


Methodology: Identify Opportunities

Quick-Check 14.0 for Production

Six application levels with five technological and sequential development stages support brainstorming of ideas

Source: VDMA (2016), modified


Methodology: Data processing

Example: Inventory Management

No processing of data

Manual disposition (order point) for Cparts in traditional containers

Human
Manual process
Technology:
Traditional
Organisation:
Skilled labor required

Storage of data for documentation

Documentation of replenishment; manual ordering process

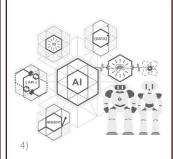
Human:
Manual process
Technology:
traditional
Organisation:
Standardized work

Analysing data for process monitoring

Data Analytics with data based inventory reduction

SAP Deutschland SE & Co. KG

Human:
Competency in data
Technology:


ERP & Software

Organisation:

Consistent Master data

Evaluation for process planning / control

Know-how automation for inventory planning (Cognitive Computing)

SAP Deutschland SE & Co. KG

Human:
Acceptance by worker
Technology:
Data Analytics Tool
Organisation:
Clarified legal basis

Automatic process planning / control

iBin: automized inventory detection and trigger for purchase orders

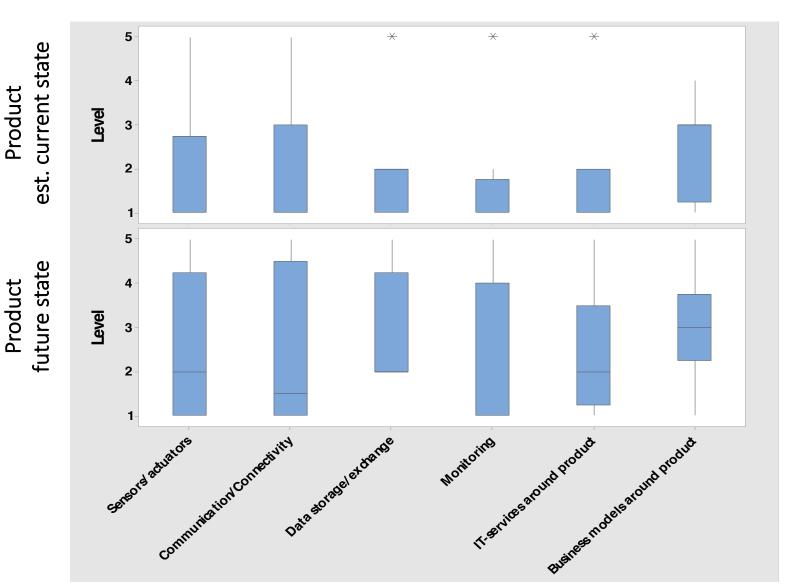
Würth Industrie Service GmbH & Co. KG

Human:
Only for escalation

Technology: RFID, optical camera, ERP Organisation:

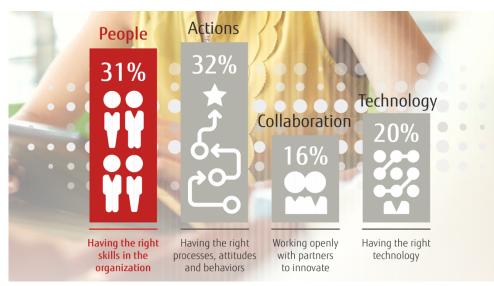
Skilled labor, consistency

Product Side


Quick-check I4.0 questions and level

Industry 4.0 for Product							
Application	Maturity level						
	Level 1	Level 2	Level 3	Level 4	Level 5		
Integration of sensors/ actuators	No use of sensors/actuators	Sensors/actuators are integrated	Sensor readings are processed by the product	Data is evaluated for analyses by the product	The product independently responds based on the gained data		
Communi- cation/ Connectivity	The product has no interfaces	The product sends or receives I/O signals	The product has field bus interfaces	The product has Industrial Ethernet interfaces	The product has access to the internet		
Functionalities for data storage and information exchange	No functionalities	Possibility of individual identification	Product has a passive data store	Product with data storage for autonomous information exchange	Data and information exchange as integral part		
Monitoring	No monitoring by the product	Detection of failures	Recording of operating condition for diagnostic purposes	Prognosis of its own functional condition	Independently adopted control measures		
Product related IT- services	No services	Services via online portals	Service execution directly via the product	Independently performed services	Complete integration into an infrastructure of IT services		
Business models around the product	Gaining profits from selling standardized products	Sales and consulting regarding the product	Sales, consulting and adaption of the product to meet customer specifications	Additional sale of product-related services	Sale of product functions		

Product Side


Quick-check I4.0 box-plot of results from Luxemburg companies (n=8)

Product Side

Recommendations for company transformation (Fujitsu study 2018)

Quelle: Fujitsu Global (2018), Study with n= 1,625 decision makers from finance, retail, manufacturing and public sector, July-August 2017, company size at least 50 employees

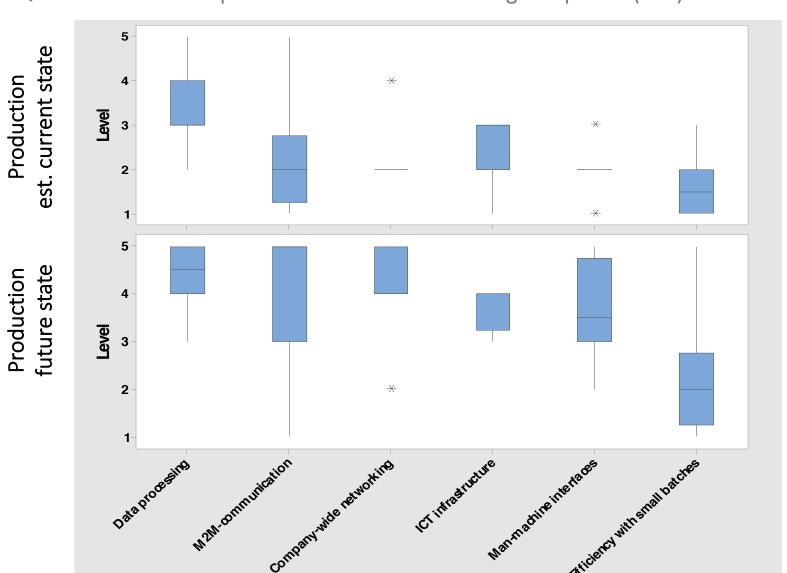
Recommendations

- → Digitize your business before others will do so
- → Use numerous agile and cost-effective projects to gain insight
- → Companies must fail quickly, fail forward and work cost-effectively
- → Agile digital strategies and implementation plans that can be easily and quickly adapted when a project is not progressing as expected

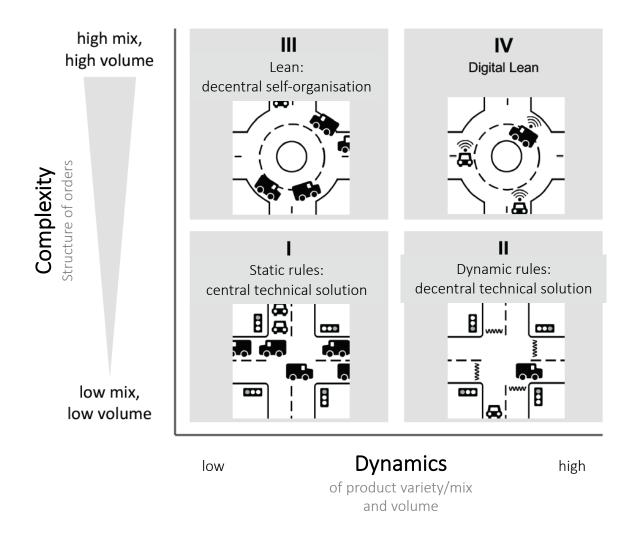
Key findings

- Almost half (46%) of all organizations have already delivered digital transformation projects and seen outcomes delivered from these.
- Customers (58%) are the biggest drivers for digital transformation.
- The 'Actions' taken by a business, i.e. having the right processes, attitudes and behaviors within the organization, is the most important criteria for achieving digital success (32%).
- Digital transformation is expected to deliver both operational and financial results within 18 months on average.
- A third (33%) of organizations have cancelled a digital transformation project in the past two years.
- The average cost of a failed project is more than €500,000.

Production Side


Quick-check I4.0 questions and level

Industry 4.0 for Production							
Application	Maturity level						
	Level 1	Level 2	Level 3	Level 4	Level 5		
Data processing in the production	No processing of data	Storage of data for documentation	Analysing data for process monitoring	Evaluation for process/planning control	Automatic process planning/control		
Machine-to- machine Communi- cation (M2M)	No communication	Field bus interfaces	Industrial Ethernet interfaces	Machines have access to internet	Web services (M2M software)		
Company- wide networking with the production	No networking of production with other business units	Information exchange via mail/telecommuni cation	Uniform data formats and rules for data exchange	Uniform data formats and interdivisionally linked data servers	Inter-divisional, fully networked IT-solutions		
ICT infrastructure in production	Information exchange via mail/telecommu nication	Central data servers in production	Internet-based portals with data sharing	Automated information exchange (e.g. order tracking)	Suppliers/custom ers are fully integrated into the process design		
Man- machine interfaces	No information exchange between user and machine	Use of local user interfaces	Centralized/decen tralized production monitoring/contr ol	Use of mobile user interfaces	Augmented and assisted reality		
Efficiency with small batches	Rigid production systems and a small proportion of identical parts	Use of flexible production systems and identical parts	Flexible production systems and modular designs for the products	Component- driven, flexible production of modular products within the company	Component- driven, modular production in value-adding networks		


Production Side

Quick-check I4.0 box-plot of results from Luxemburg companies (n=8)

Production Side: Crossroads-Model explains Suitability of Concepts

Benefit of digitalization depends on complexity and dynamics of orders

Production Side

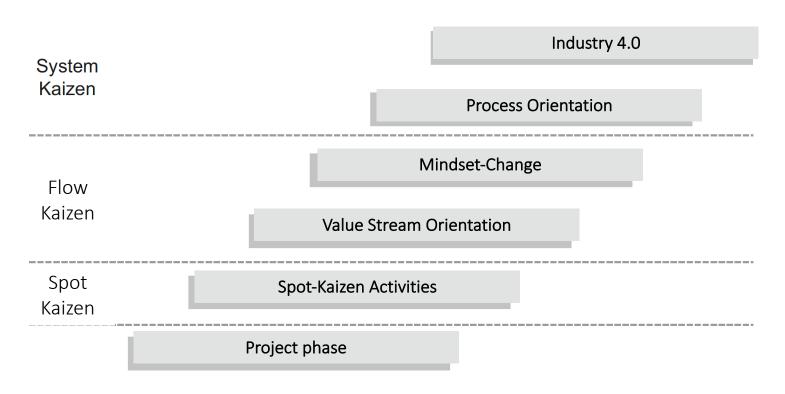
Similarities and differences of concepts

Lean Production

Industry 4.0

Similarities of both concepts

- Increase in productivity
- Avoidance of complexity
- Stable and self-controlling processes
- Standardization of products and processes, modularization
- Holistic view of the company


Differences between concepts

- Many simple solutions
- Focus on employee creativity
- All employees can contribute regardless of their level of qualification

- Focus on data
- Networking and process automation as a means of optimization
- Assistance for the employee
- Increased complexity is accepted
- High level of qualification required

Production Side: Six steps to Industry 4.0 from Lean Perspective

Improve your processes, first!

Recommendations

- → Lean and Industry 4.0 complement each other
- → Improve processes first or in parallel before starting Industry 4.0 transition
- → Digitize production especially to adjust for complexity and dynamics

Summary (I)

Manage the risk of transformation

Consequences Issue No focus on the company's digital Current business model to be digitally potential, new competition from IT transformed one to one newcomers Digitization of function-oriented Automation of waste and unstable processes with little focus on added processes value and customers Complex or not self-controlling Complexity cannot be mastered, overloaded IT integration processes are digitized Managers and employees fail in their The inertia of outdated and crusted new role of process orientation structures is misjudged towards the customer

Summary (II)

Create new value through implementation of Industry 4.0 Roadmap

- Reach out for the potentials on the product side in small but fast steps!
- The prerequisite for industry 4.0 in production is the successful implementation of good processes and process orientation in the company:
 - Waste-free and stable processes,
 - Self-organization and control,
 - Standardized and modularized products and processes,
 - Process-oriented added value tailored to customer requirements,
 - Mindset change in managers and employees
- Success factors:
 - Commitment of leadership
 - Planning success
 - Role model function of leadership
 - Correct mindset, competent and responsible employees
 - Pursuing a holistic approach
 - Measuring success

Thank you for your attention!

References

Used/Recommended Literature

- BCG (2017): Digital Acceleration Index, download at 21.10.17, link: https://www.bcg.com/capabilities/technology-digital/digital-acceleration-index.aspx
- Feldmann, C., Ziegenbein, R. (2018): Digital Lean Mit dem Crossroads-Modell zu mehr Effizienz, Industrie 4.0 Management 34 (2018) 5
- Fujitsu Global (2018): Studie The Digital Transformation PACT, https://www.fujitsu.com/global/imagesgig5/4161-001-PACT-for-success-Full-Report-v1.0.pdf, Download am 25.04.19
- McKinsey Digital (2015): Digitaler Kompass Industrie 4.0, Industry 4.0 How to navigate digitization of the manufacturing sector, download at 21.10.17, link: https://www.mckinsey.de/files/mck_industry_40_report.pdf
- PWC (2014): Strategy&, Chancen und Herausforderungen der vierten industriellen Revolution, download at 24.10.17, link: https://www.strategyand.pwc.com/media/file/Industrie-4-0.pdf
- Seiter, M. et al (2016): Roadmap Industrie 4.0: Ihr Weg zur Erfolgreichen Umsetzung von Industrie 4.0, Verlag tredition GmbH, Hamburg, 2016
- Seiter, M. et al (2007): Wirtschaftlichkeitsanalyse mit dem Extended Performance Analysis- Ansatz EPA Am Beispiel von RFID Investitionen, IPRI Research Paper Nr. 10, Stuttgart, 2007
- Schuh, G. et al (2017): Industrie 4.0 Maturity Index: Die digitale Transformation von Unternehmen gestalten, Acatech Studie, download at 21.10.17, link:
 http://www.acatech.de/fileadmin/user-upload/Baumstruktur-nach-Website/Acatech/root/de/Publikationen/Projektberichte/acatech-STUDIE-Maturity-Index-WEB.pdf
- VDMA (2017): Leitfaden Industrie 4.0: Orientierungshilfe zur Einführung in den Mittelstand, download at 21.10,17, link: http://industrie40.vdma.org/documents/266693/9670777/4%20I40%20konkret%20B-und-R.pdf/6a2d2f93-cd8a-4c11-9287-a63cd7a4dc43
- Wiegand, B. (2018): Der Weg aus der Digitalisierungsfalle Mit Lean Management erfolgreich in die Industrie 4.0, Springer Gabler, Wiesbaden, 2018

Other References

- 1) Ultimo Beratungsgesellschaft mbH: http://www.ultimo.co.at/theorie.htm
- 2) BEYER-Mietservice KG: https://www.beyer-mietservice.de/unternehmen/news/berufliche-perspektiven.html
- 3) SAP Deutschland SE & Co. KG: https://www.sap.com/germany/products/analytics/business-intelligence-bi.html
- 4) Creative Market: https://creativemarket.com/sjagiello/574425-Cognitive-Computing-Icons
- 5) Würth Industrie Service GmbH & Co. KG: https://www.wuerth-industrie.com/web/de/wuerthindustrie/cteile management/kanban/ibin intelligenterbehaelter/ibin.php
- 6) Picture front page: bigstock--216596716.eps elenabsl